Oligomerization of hantaviral nucleocapsid protein: charged residues in the N-terminal coiled-coil domain contribute to intermolecular interactions.

نویسندگان

  • Agne Alminaite
  • Vera Backström
  • Antti Vaheri
  • Alexander Plyusnin
چکیده

The nucleocapsid (N) protein of hantaviruses (family Bunyaviridae) is the most abundant component of the virion; it encapsidates genomic RNA segments and participates in viral genome transcription and replication, as well as in virus assembly. During RNA encapsidation, the N protein forms intermediate trimers and then oligomers via 'head-to-head, tail-to-tail' interactions. In previous work, using Tula hantavirus (TULV) N protein as a model, it was demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein and that the hydrophobic 'a' residues from the second alpha-helix are especially important. Here, the importance of charged amino acid residues located within the coiled-coil for trimer formation and oligomerization was analysed. To predict the interacting surfaces of the monomers, the previous in silico model of TULV coiled-coils was first upgraded, taking advantage of the recently published crystal structure of the N-terminal coiled-coil of the Sin Nombre virus N protein. The results obtained using a mammalian two-hybrid assay suggested that conserved, charged amino acid residues within the coiled-coil make a substantial contribution to N protein oligomerization. This contribution probably involves (i) the formation of interacting surfaces of the N monomers (residues D35 and D38, located at the tip of the coiled-coil loop, and R63 appear particularly important) and (ii) stabilization of the coiled-coil via intramolecular ionic bridging (with E55 as a key player). It is hypothesized that the tips of the coiled-coils are the first to come into direct contact and thus to initiate tight packing of the three structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oligomerization of hantavirus nucleocapsid protein: analysis of the N-terminal coiled-coil domain.

Hantaviruses constitute a genus in the family Bunyaviridae. They are enveloped negative-strand RNA viruses with a tripartite genome encoding the nucleocapsid (N) protein, the two surface glycoproteins Gn and Gc, and an RNA-dependent RNA polymerase. The N protein is the most abundant component of the virion; it encapsidates genomic RNA segments forming ribonucleoproteins and participates in geno...

متن کامل

Hantavirus nucleocapsid protein oligomerization.

Hantaviruses are enveloped, negative-strand RNA viruses which can be lethal to humans, causing either a hemorrhagic fever with renal syndrome or a hantaviral pulmonary syndrome. The viral genomes consist of three RNA segments: the L segment encodes the viral polymerase, the M segment encodes the viral surface glycoproteins G1 and G2, and the S segment encodes the nucleocapsid (N) protein. The N...

متن کامل

Alphavirus nucleocapsid protein contains a putative coiled coil alpha-helix important for core assembly.

The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha...

متن کامل

Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer.

The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self-association. In the present work we characterize t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of general virology

دوره 89 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2008